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APPLICATION OF A MODEL OF A
QUASIEQULIBRIUM PLASMA AND METHODS OF LIE
ALGEBRA TO CALCULATIONS OF PARAMETERS OF
A TRANSPORTED HIGH-CURRENT RELATIVISTIC
ELECTRON BEAM

A. L. Borodich, V. I. Stolyarskii, and UDC 539.121.8, 533.9.072
A. A. Khrushchinskii .

A method for calculation of the parameters of an intense beam of charged particles transported by the
magnetic field of the focusing elements is described, and the results of numerical modeling are presented.

A high-current relativistic electron beam (HREB) in a transport channel is a single-component totally
ionized nonhomogencous plasma located in the clectromagnetic field of a focusing element. Application of a paraxial
approximation to the description of the dynamics of particles in the beam makes it possible to use the methods of
Lie algebra in calculations of the transformation operator that relates initial and final coordinates of a given particle
in the phase space of canonically conjugate variables [1, 2]. The main problem that arises upon solving the problem
of transport of a charged becam is that of taking into account the effect of the beam’s charge on its properties. A
sclf-consistent method for solution of of this problem for beams with static delf-ficlds is described in [3, 4]. In the
present work, based on a plasma model and methods of Lic algebra, a solution is proposed of the problem of
transport of a HREB with a time-dependent self-ficld. Calculations are carried out for a cylindrical beam trasported
by the field of a magnetic focusing element.

The position of any particle of the beam in six-dimensional space is characterized by the vector £(x, y, 1.
Px» Py, PO. The independent variable z is the coordinate along the reference trajectory of beam particles, x and y
denote the transverse deviation of the trajectory of the given particle from the reference trajectory, ¢ denotes the
time of particle prescnce in the conducting channel, and the other three quantitics are the corresponding canonical
momenta. The use of a reference trajectory implies description of the dynamics of becam particles within a paraxial
approximation.

As is known, thc most general plasma model is a kinetic description using the distribution function g(&, 2)
of the statistical system of particles. Since for intense beams the interaction parameter n (the ratio of the mean
potential cnergy of particles interaction to the mean kinetic energy of particle free motion) is much less than unity,
Coulomb interaction of particles prevails over processes of particle collision [5]. This means that in calculations of
the change in the distribution function one can restrict the consideration to a zeroth approximation with respect to
the interaction parameter 7, i.c., a change in the particle distribution in a volume of the phasc space selected in
the vicinity of the point £ takes place only duc to the inflow and outflowing of particles via the surface bounding
the volume. In other words, g(&, z) satisfies the Liouville equation g(£, z) = 0 (the dot denotes the total derivative
of the function with respect to the independent variable z).

Let us consider the dynamics of an arbitrary particle of the beam. Its Hamiltonian is as follows:
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where the scalar and vector potentials of the electromagnetic ficld & and A consist of two terms characterizing the
action of the field of the focusing clement and the ficld of the space charge on the particle:

)fncld beam

®(x,y;2) =1 (x. ¥y 2) +® (x, ¥ 2)

field beam

A(x,y;2)=A (e, v, 2) + A (x, 3 2).

field | field . ) . ) . .
and A" arc considered to be given, and their particular form is determined by the

The potentials &
particular focusing system uscd for beam transport. For magnctic focusing elements (quadrupole, solenoid, etc.)
@€' = 0. The dependence of the potentials D™ and AP on the coordinates is determined by the main transport
problem of calculation of the transverse beam dimensions and angular divergence in an arbitrary cross-section of
the focusing channcl.

The action of the transformation operator relating the initial and final coordinates of an arbitrary particle

in the beam in the phase space

E(z) = ME" (),

can be considered a canonical transformation. Taking into account that canonical transformations form a simplectic
group, the opcrator can be factorized, i.c., presented as an infinite product of Lic exponentials of an infinite
sequence of certain homogencous polynomials f,, [1, 2. And since, firstly, the Poisson brackets that determing
the Lic product are invariant with respect to canonical transformations and, secondly, ten generators of the
simplectic group realize the representation of the Lic algebra, the polynomials /5, can be expressed via polynomials
H,, entering the Hamiltonian.

In order to decompose the single-particle Hamiltonian (1) into polynomials we project the region of the
phase space taken by the given particle at a given value of z on to the region of the phasc space of the reference
particle at the same value of z. This is attained by mcans of a canonical transformation as a result of which the
temporal coordinate and the energy of the beam particle also become linked with the reference trajectory (its

paramcters arc marked with the index 0):
O ; .
[(=T+¢t (), x=X, y=Y;
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For Hamiltonian (1) written in the new variables
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(v being the velocity of the reference particle) one can expand the radicand into a Taylor series in the vicinity of
the reference trajectory (X =0, ¥Y=0,7=0, Py =0, Py =0, Pp= 0) and obtain a representation of #' as an
infinite sum of homogencous polynomials H .

If the explicit form of ®P*™ and AP**™ s known and they arce decomposed into polynomials over the space
coordinate onc can use Dragt’s method (1, 2| to express polynomials £, in terms of A, and write the transformation
operator . cxplicitly. In order to find .#, c.g., with accuracy up to terms of the fourth order, onc must solve a

system of three matrix differential cquations, whose form is presented in (1, 21
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In order to calculate the potentials "™ and AP®™ onc needs to know the evolution of the distribution
function of beam particles in the process of beam transport. If we described HREB dynamics in the 6V-dimensional
phasc space, then the distribution function of the microcanonical ensemble would correspond to the system under
consideration (singlc-component totally ionized plasma consisting of N particles). But since we use the formalism
of the six-dimensional phase space, our system in the cquilibrium state is described by Gibbs’ canonical
distribution. Indeed, the phasc space of each i-th particle of the system (i = 1, M is projected onto thc phasc space
of the reference particle. Then, the field of the space charge does not act on the reference particle, therefore its
kinetic energy remains constant. Each i-th particle is subjected to the action of the field of the space charge, and
this results in a change in its potential and kinctic cnergies. However, the mean cnergy of the system under
consideration is conscrved. As a result of interactions between plasma particles, the transverse four-dimensional
volume occupied by the system changes. Therefore, the transverse cmittance of the beam should change, and a
change in the system takes place. In order to calculate this variation, onc must solve Vlasov’s equation combined
with Maxwell's system of equations.

However, an alternate way exists. Each i-th particle of an arbitrary cross-scction of the beam is subjected
to the field of the space charge created by other particles and described by potentials ®*3™(x, y: z) and
Abe“m(x, y; z). 1ts form can be considered to be constant along z within the limits of a certain length [ exceeding
the Debye length but less than the free-path length for clectrons in the plasma. Therefore, on each elementary
portion [ of the transport route, particles moving along the z-axis experience the action of the time-invariant
electromagnetic field. At the same time, along the entire route the distribution function satisfics the Liouville
equation. Therefore, in the process of transport the beam as a statistical system transforms successively from onc
equilibrium state to another. It is evident that the volume occupied by the particles plays here the part of a slowly
varying parameter of this adiabatic process. Thus, the distribution function of the quasiequilibrium plasma under
consideration is functionally Gibbs’ distribution along the entire transport channel and changes solely its shape on
each elementary portion /.

Including in the consideration the magnetostatic field of the focusing clement does not disrupt the
equilibrium in the system since its mean energy does not change.

For a plasma in a statc of statistical equilibrium, the clectric and magnetic ficlds arc not interrelated [7 ].
Therefore, to calculate A on each clementary portion /, one can usc the quasistationary approximation [8 |:

AT X =0, AT 1 =0, AT (Y, ) = 20 (x, vy
c

Thus, the scif-clectric field of the beam EP®*™ = —grad 2™ appears to be strictly transverse with respect
1o the reference trajectory, and its self-magnctic field B?™ = rot AP*™ is azimuthal.

In order to calculate ®P*2™ and A®™ on cach elementary portion /, onc must know the distribution function
of particles over the transversc spatial coordinates and corresponding momenta. Usually, in problems of beam
transport and in numerical modcling of this process it is assumed that the transverse coordinates of particles have
a Gaussian distribution, whereas the distribution of conjugate momenta is described by Maxwell’s statistics (3, 4]
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where a, 8, y, and d are the expected values of the random quantitics X, Y, Py, Py; ox, oy, dx, Ay arc variances
of these quantitics.
According to (4), the expression for the volume density of the beam charge p(X, ¥) on cach clementary

portion / is as follows:
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Fig. 1. Variations in transverse dimensions of electron beam moving in
homogeneous magnetic field: 1) Bg = 30 G; 2) 40; 3) 50. z, r, m.
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where [ is the current of the beam being transported.
Then the value of ®**™ on a particular transport portion is calculated using Green’s function as a solution
of the two-dimensional Dirichlet boundary-valuc problem for Poisson’s equation:

P (o vo) = S dxdy £ Lo ‘ (6)
(xy) gy 2 v (x — xo)2 + (v~ _vo)2

where ¢g is the dielectric constant of vacuum.

The polynomial expansion of ®P**™(X, ¥) on cach elementary portion [ can be performed using the method
of least squares. In order to do this, a transverse grid is superimposed on the transversc cross-section of the beam,
the values of ®P®™ are calculated at the nodes of the grid according to (6), and then the tabulated function is
approximated by homogeneous polynomials. Correspondingly, the coefficients of the polynomial expansion of
A%3™ x| v) will differ by the v/ c multiplier.

Thus, the scheme for calculation of the basic parameters of the HREB in the process of transport looks as
follows. The initial cross-section of the beam is represented by probe particles whose distribution function over the
transverse coordinates and momenta is determined by the expression (4). From (6) we find numerically the values
of ®™3™ 4¢ the nodes of the grid superimposed on the cross-section by calculating the integral, e.g., by Gauss’
method over a hyperrectangle. Then functions d™3™(X, ¥) and A™*™(X, ¥) arc approximated by homogencous
polynomials up to the fourth order and substituted into the Hamiltonian (3), and we find expressions for Hp,.
Solving numerically the system of three matrix differential equations, e.g., by the Runge—Kutta—Merson method,
we obtain the explicit form of the transformation operator . With its help we find the coordinates and momenta
of the probe particles at the end of the first elementary portion. By calculating the mean values and variances of
the transverse coordinates and momenta of probe particles, and their energy spectrum, we obtain the initial data
on the probe particles for calculations in the next transport portion. By repeating the procedure of evaluation of the
potentials of the ficld of the space charge of the beam and the transformation operator, we carry out calculations
in succeeding steps.

Based on the afore-described algorithm, the TRLIE software for a PC was developed for calculations of
HREB parameters in a transport channel with magnetic focusing clements.

By way of ecxample let us consider the change in the beam radius under strong focusing in a solenoid
(plasma cylinder of radius rg in a constant magnetic field By). Results of calculations using the TRLIE program
for various valucs of By are presented in Fig. |. The calculations were carricd out for a HREB with a kinetic cnergy
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TABLE 1. Characteristics of Surface Waves in the Beam and Plasma

E, MeV k, m™! w, sec”! w, sec”!
1 1.70 2.77-10° 2.51-10°
1.5 1.28 2.88-10° 2.72-10°
2 1.03 2.93-10° 2.80-10°

of 10 keV, a current of 10 kA, and initial radius of 10 cm, and an initial scatter in transverse velocitics cqual to
1% of the longitudinal velocity of particles. The cross-section of the beam was represented by 100 probe particles.

The obtained oscillations of the boundary of the beam can be identified with surface oscillations of a plasma
spatially confined by an cxternal longitudinal magnctic field. The dispersion equation for axisymmetric modes
yiclds the following expression for the spectrum of those longwave oscillations (the frequency « does not exceed
the plasma frequency wy) [T]:

2 el (7)
w =K T n z;(; .

Table 1 presents values of the wavenumber & and frequency w of surface waves obtained using the TRLIE
software for various values of induction of the focusing magnetic field and values of w calculated from (7).

Here we should point out the following circumstances. Firstly, frecquencies w and w are calculated in
different frames: w — in the laboratory frame and w in a frame moving along with the beam. Multiplying w by the
Lorentz factor y we obtain the values of frequencies of the surface oscillations of the beam in the laboratory frame.
Secondly, since oscillations of the beam boundary manifest themsclves as oscillations of the radius of the beam
cross-section, it seems natural to consider their phase velocity to be equal to the velocity of the reference particle
of the beam. Thirdly, we take the minimum value of the HREB radius ry as a parameter of plasma inhomogeneity.
According to the data from Table I, the modeling results agree with the known facts of plasma physics.

The proposed model of quasiequilibrium plasma and methods of Lic algebra make it possible to calculate
the basic parameters of a transported HREB. In addition, it helps to relate phenomena that take place in a bcam
of charged particles moving in an external clectromagnetic field to processes that take place in spatially confined
single-component collisionless plasma.

The work was carried out under financial support from the Fundamental Research Fund of the Republic
of Belarus, grant No. MP 41-94.
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